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o
ABSTRACT

In this paper, a unified, theoretical model of the hypersonic viscous
shock layer is presented, which, ina self-consistent manner, covers the entire
range of shock Reynolds number from 0 (50) to 0 (1 04), including the effects
of mass transfer. At the lowest Reynolds numbers considered, merging of
the fully viscous shock layer with the shock wave occurs, and at the highest
Reynolds numbers, the boundary layer asymptote is approached.

In addition, in order to compare the new results obtained from this
new system of equations and boundary conditions at high Reynolds numbers
with those obtained from boundary layer solutions for precisely the same
hypersonic flight conditions, the boundary layer equations have been
reformulated by retaining only first order terms in the above equations,
in addition to making the usual assumption of a thin boundary layer. These
equations and the boundary conditions used are equivalent to the more usual
boundary layer formulation,

Correlated results of the numerical solutions obtained on a high speed
digital computer (IBM 7094) for both systems of equations with their appro-
priate boundary conditions are presented, The range of hypersonic
flight conditions for which calculations were obtained include flight
velocities from 10, 000 ft/sec. to 25, 000 ft/sec.; altitudes from 100, 000 ft,
to 350, 000 ft.; shock Reynolds numbers from order 10 to order 104; surface
temperatures from SOOOR to 35000R; and dimensionless mass transfer rate
parameter fw from 0 to -0.4. The correlations include non-similar heat

transfer rates, skin friction and normal surface pressures.
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SYMBOLS
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mass fraction of species i

.th :
specific heat of the i~ species at constant pressure

frozen specific heat of mixture
binary diffusion coefficient

dimensionless stream function

th '
static enthalpy of the i species, including chemical enthalpy

static enthalpy of the mixture
dimensionless enthalpy
stagnation enthalpy

curvature of body

outward normal unit vector
static gas pressure
heat transfer

body radius

temperature

velocity components

dimensionless velocity components
macroscopic gas velocity

absolute velocity of species i
diffusion velocity of species i
flight speed

chemical source term, net mass rate of production of species i
per unit volume by chemical reaction

coordinate system

ratio of specific heats

boundary layer thickness
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RB
Subscripts
BL

i

o

s

SI

w
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n

shock detachment distance
shock wave thickness

density ratio across shock wave
transformed coordinate
viscosity

density

shear stress

stress tensor

body coordinate angle

boundary layer

.th .

i species

in the absence of mass transfer

behind an equivalent normal shock wave
shock interface

wall, surface of vehicle

upstream, ambient conditions

denotes differentiation with respect to 7

Dimensionless Groups

m (H -h )
B = s W » mass transfer parameter
Q
W
o
Qw
= t
CH 5V (H -5 , Stanton number
© ® s W
T w
Cf = > , skin friction coefficient
1/2 PV _
pC 8 .
Le = J)I 1) , binary Lewis number
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I, INTRODUCTION

In considering the problem of the entry of a nuclear rocket into a
planetary atmosphere, one is interested in determining the forces and
external heating acting over the outer surface if it enters intact, or the
forces and heating experienced by the small particles which result if the
rocket is deliberately exploded.

As an object of arbitrary size, traveling at hypersonic speeds, descends
into the Earth's atmosphere from a sufficiently high altitude, it encounters a
variety of environmental conditions. Interest in the different aspects of
thcse phenomena has shifted fromthe earliest studies of meteor entry, to the
motion and thermal response of the early ballistic reentry vehicles, to the
present more sophisticated problems of maneuvering entry.

Some of the earliest studies, restricted to order of magnitude analyses,
are summarized by Hayes and Probstein (Ref, 1), where the entire hypersonic
flight regime was divided intoseven subregimes from continuum to free molecule
flow, including the boundary layer regime, vorticity interaction regime, viscous
layer regime, incipient merged layer regime, fully merged layer and transitional
layer regimes, first order collision theory regime, and free molecule flow
regime. In subsequent studies by Goldberg and Scala (Refs, 2 and 3), the
number of major subregimes was reduced from sevento five by including all
departures from the classical boundary layer regime, up to, but not including,
the transitional regime, into a single classification called the low Reynolds
number regime, which was then subdivided into the viscous layer regime and
the merged viscous layer regime. In the present study, the required classification
scheme is further reduced by no longer making a distinction between the two
subregimes at low Reynolds number. That is, now a single system of equations
and boundary conditions covers the entire hypersonic low Reynolds number
flight regime.

The present classification scheme is shown in Figure 1 superimposed
on typical ballistic and lifting trajectories. Note that Figure 1 is for a

nominal nose radius of one tenth of a foot; for smaller nose radii, all of the



low density effects are shifted to lower altitudes. This decrease in altitude is
approximately fifty thousand feet for each order of magnitude decrease in nose
radius. Descriptive stagnation region profiles are shown to the right of the
respective flight regimes.

Details of many of the phenomena encountered in the free and near
free molecule regimes and transitional regimes can be found, for example,
in references 4-12, Of primary concern in this paper is hypersonic continuum
fluid mechanics in the forward region of a vehicle with emphasis on low

Reynolds numbers,




.11, DISCUSSION OF THE HYPERSONIC CONTINUUM FLOW FIELD

For the model employed in this study, it will be seen that the hypersonic
flow field in the forward stagnation region can be characterized by three
dimensionless quantities: 1) Res, the shock Reynolds number, defined as

p_V_R
Re = B (1)

s M

primarily accounts for the altitude and vehicle size since the ratio Vo / us is

relatively insensitive at hypersonic speeds; 2) €, the density ratio across a

normal shock wave, or

€ = (2)

primarily accounts for the Mach number; and 3) Pr, the Prandtl number,

defined as
Pr= —&—— (3)

accounts for the mode of energy transport.

At low altitudes (high Reynolds numbers) the flow field about a vehicle
flying at hypersonic speeds is usually handled in 2 manner analogous to that
suggested by Prandtl (Ref. 13), Of course, for hypersonic speeds, Prandtl's
concept has been greatly broadened to include not only the transport of mass
and momentum, but in addition, the transport of chemical species (diffusion)
and energy. Furthermore, since the flow is supersonic, the two regions of
inviscid flow are separated by a shock wave. Thus, the flow field about a
vehicle traveling at hypersonic speeds and high Reynolds numbers is obtained
theoretically by patching together the solutions of four separate and distinct
regions of the flow field. That is, between the undisturbed free stream and
the vehicle surface there are three more distinct regions of flow, namely the

shock wave separated from the boundary layer by an inviscid region. In

other words, at high Reynolds numbers the flow field tends to relax such that

in most of the volume of the flow region the flow is relatively inviscid,



and only in regions with small dimensions do most of the properties of the
flowing fluid change by relatively large amounts. Since the principle changes
occur over small distances, the gradients there must be large. This, then,

is the rationale of classical hypersonic continuum fluid mechanics.

For suborbital flight speeds, the radiative transport of energy is very
small compared with the aerodynamic heat transfer and hence the dominant
energy, momentum and mass transfer processes can all be adequately analyzed
by studying the phenomena within the boundary layer adjacent to the surface,.
This procedure has yielded many useful solutions to the thermal protection
problem, e.g. Refs. 14-17.

As has already been indicated, the boundary layer approximation is
applicable for high Reynolds numbers. With decreasing Reynolds number
(increasing altitude and/or decreasing body size), departures from boundary
layer theory predictions become evident., The region between those Reynolds
numbers where departures become significant and those at which kinetic theory
considerations become important has been given the name of the low Reynolds
number regime. Two most important overall effects are noted: 1) Since at
high Reynolds numbers the boundary layer thickness, §__, varies as

1
6 o —— (4)
BL Re

6BL

BL

and the shock layer thickness 65 remains essentially constant (Refs. 2 and 3),

at a sufficiently small Reynolds number the condition
6BL
6

s

<< 1 (5)

no longer holds, i.e,, the fluscid effects extend throughout a major portion
of the shock layer. Furthermore, as shown in reference 3 the viscous layer
thickness is less than that predicted by eq. (4) at these low Reynolds numbers.
That is, this non-isentropic layer is thinner than boundary layer predictions
and so the gradients are greater, manifested by the larger heat transfer rates

and skin friction than that given by boundary layer predictions (Refs. 2,3,18-22),

4




This condition has been given various names, e.g., vorticity interaction and

viscous layer regimes, 2) The shock wave thickness, A , varies as
s

L O —=— (6)

However, at high Reynolds numbers

A

=2 << (7
6BL

Thus, the thickening of the shock wave does not become significant until
even lower Reynolds numbers. With decreasing Reynolds number, the
thickening non-isentropic shock wave structure begins merging with the
thickening non-isentropic viscous layer structure, eventually forming a single
non-isentropic relaxation zone in which the two separate non-isentropic pro-
cesses become intermingled and coupled. Thus, an even larger volume
becomes available to relax 2ll of the non-isentropic effects, thereby

reducing these gradients, This is evidenced by the turn around in the

increasing predictions of QW/ Qw
BL

decreasing Reynolds numbers (Refs. 23-26). This is usually given the name

and T /T with
w WBR

of merged or incipient merged layer regime. In this paper a distinction is
no longer made between the two regions, but all departures from boundary
layer predictions out to where the thickened shock wave structure includes
the shock layerare treated witha single consistent set of equations and boundary
conditions to account for both of these effects, and is now simply called the
low Reynolds number regime.

In this study it is assumed that the Navier-Stokes equations are the
valid conservation relations for continuum fluid mechanics. If, in the shock
layer, the Navier-Stokes equations are suitably expanded in a body-oriented
coordinate system in the forward region of a two dimensional or axisymmetric
body it can be shown that the order of magnitude of each term of the system fits
mainly into one of eight categories. When the equations are normalized such

that the terms of largest magnitudes are of order one, it is found that there



are three orders of magnitude for the influscid terms and five for the fluscid
terms, namely (in descending orders of magnitude):

Influscid Terms

pu—3t | ov—gt pv—%(;—z) (8)
0 (1) 0 (€ ) 0 (€2)
Fluscid Terms
2
5050 55 B | s (esy) | S wv ] e (22)
2 3
(ell'{e) O(Rtle ) (Ree) O(RZ ) O(R: )
S S S S S

(9)

where examples of terms are shown associated with the respective orders of
magnitude and the appropriate characteristic lengths are the nose radius, RB,
for x, and the shock detachment distance, 55, for y; see Figure 2. Note: it

has been shown (Refs. 2,3, 21, 26, 27) that in the stagnation region

6, =0(e RB) (10)

For hypersonic flight speeds in the Earth's atmosphere

€ < 0(0.1) (11)
Thus, it is seen that at large shock Reynolds numbers the flow in the shock
layer can be quite accurately characterized by the terms of order one. However,
since it is usually of little inconvenience to include the other influscid terms,
these are often included. In either case, this system of equations is called
the Euler equations. The boundary conditions are given by the Rankine-
Hugoniot relations behind the shock and the vanishing of the normal com-
ponent of velocity at the wall. However, upon a closer examination of the
physics in the immediate vicinity of the surface, one finds that the tangential
component of velocity and temperature are not equal to that given by a solution
of the Euler equations but are more closely related to the physicochemical inter-
actions that occur at the surface. Therefore, in the neighborhood of the wall,

the Navier-Stokes equations are re-examined, This time the appropriate




normal characteristic dimension chosen is the boundary layer thickness,

GBL' Again the equations are normalized such that the largest is of order

one, Then each of the terms fits into one of the following five categories:

0(l), O Re-allz , 0<Re;31 ) 0<Re_63/2> , O<Re:52 > (12)
BL BL BL BL

where Re6 is the Reynolds number based on the boundary layer thickness.
BL

It is noted that there is an equivalency of the terms in the shock layer and in

the boundary layer {of course the equations are the same) as shown by the

following:
Shock Layer Boundary Layer
1
O(l)+0<€Re> ~ O (1)
s
O (¢) + o( L > ~ o[ ——
Re
s Re6
BL
2 € 1
—_— ~ O
Ole)+ O<Re > (Reé >
S BL
2
1
~ ®)
© Re )

3
€ 1
o) > ~ of——— (13)
<Res (R.e2 >

As discussed previously, at hypersonic speeds and high Reynolds
numbers the flow can be separated into four distinct regions. It is usually

assumed that the free stream flow is uniform, and so the equations describing

this region are of zeroth order. Each of the three remaining regions are usually

described by first order equations. The Rankine-Hugoniot shock relations
are a coupled set of algebraic equations relating the flow conditions in one

inviscid region to that of another relatively inviscid region; the two flow



regions separated by a highly non-isentropic shock wave. Note, in the

stagnation region the separated shock wave is highly curved, thus the flow

behind it is rotational and thereby, non-isentxopic. However, at high Reynolds

numbers, the gradient of the entropy behind the shock wave is far less than
the gradient of the entropy in the shock wave and so is often neglected .

On the other hand, the vorticity in the shock layer is characterized by a
gradient of the tangential velocity. This gradient is small in comparison
with its counterparts in the boundary layer and shock wave and is usually
neglected for boundary layer calculations. In fact, upon examination of the

usual transformed boundary layer momentum equation, assuming similarity

(Refs. 1, 14-17) i. e.

<%e— fnn>n HEE 4 ,3<—f)i - fn2> =0 (14)
with boundary conditions
@ n=0
£(0) =1, £ (0)=0 (15)

and as nn = ®

fn (n)- 1.0 (16)

It is seen that since

n U,
for fn (M) to asymptotically approach one as 11 = = then f must go to zero,
i. e. the gradient of u approaches zero. In fact, sinceas ) = = , _Pu 1.0,
peue
o]
T - 1.0, f77 = 1.0, therefore, since f increases monotonically, in order to

satisfy the differential equation as n — - 0 and also fnnn-' 0. The

, 1
n

problem is not that the gradient of the tangential component of velocity must

go to zero at the '"edge'’ of the boundary layer, but that u, is computed from

the Euler equations in the absence of the boundary layer. Thus, unless the

boundary layer is truly very thin in comparison to the shock layer thickness, i.e.

e wa o e s e . e

e, ARmmm  —




6BL <<<1.0 (18)

6

S

the level of u could be sufficiently underestimated so that significant errors
occur. In fact, it will be shown that even at a high shock Reynolds number of
15, 000 the discrepancy in skin friction is thirty percent, due primarily to this
cause. This effect is in addition to the effect ofathinner viscouslayer than
predicted by boundary layer theory. The thinner viscous layer probably
partially alleviates the situation. Thus, it is a combination of a thinner non-
isentropic layer producing larger gradients, plus a higher level at the edge
producing even higher gradients for the tangential component of velocity that is
manifested by the large increase in skin friction predictions above that obtained
from boundary layer theory. It is noted that the difference between the

stagnation enthalpy, H , and the enthalpy behind a normal shock, hs’ is
e

H -h =e’H_ (19)
Thus, the effect on heat transfer is primarily due to the thinner viscous layer
and not to a large discrepancy of the value at the edge.

The purpose of this study was to investigate the effects due to low
Reynolds numbers. In searching for appropriate boundary layer predictions,
it was found that differences in the various predictions (e. g. Ref. 28) were of
the order of the low Reynolds numbers effects at higher Reynolds numbers,

In order to overcome this difficulty, the boundary layer equations and boundary
conditions were reformulated so that solutions with identical fluid properties
and flight conditions could be obtained. These boundary layer

solutions were then compared with the more exact solutions of Scala and
Gilbert and the agreement was reasonable. Furthermore, it was then
possible to separate the effects of low Reynolds numbers.

It can be argued that at low Reynolds numbers the gas in the hypersonic
shock layer should be closer to being frozen chemically than in local thermo-
chemical equilibrium. However, in order to assess this effect properly it is
necessary to perform calculations for a system of equations capable of simulating

non-equilibrium chemistry coupled with the flow. Since this would represent



a very complicated theoretical model, certain approximations have been intro-
duced herein. In particular, it has been assumed that one may utilize an
equilibrium dissociated gas model if the final results are normalized properly.
Furthermore, some calculations were carried out utilizing a non-dissociating
perfect gas model. It was found that when properly normalized with respect to
boundary layer solutions utilizing the same gas model, that the low Reynolds
correlations presented herein are also valid for the non-dissociating perfect
gas model, which serves to eliminate much of the arbitrariness of the gas model.

The governing equations utilized in the present analysis are the same
as those used in Reference 3, i.e., the equations of change for the flow of a
compressible chemically reacting binary gas mixture interacting with an
injected gas. Included are the conservation equations of mass, momentum
and energy. The diffusion equation was uncoupled by assuming a Lewis
number of unity. Thus, the above system of equations which was treated
consists of a coupled set of 4 non-linear partial differential equations of 7th
order having split boundary conditions. For the low Reynolds number regime,
all terms of order 1/ReS and larger were retained. The method of separation
of variables was used to reduce the governing equations to a set of 6 coupled
non-linear ordinary differential equations of order 10 with an '"unknown"
range of integration.

The outer boundary conditions are similar to, but are more com-
plete and consistent with the low Reynolds number equations described
above, than those suggested in Reference 29 and utilized by Cheng (Ref. 25),
Probstein and Pan (Refs., 30 and 31) and Kao (Ref. 26). These include the
effects of transport of mass, momentum and energy in a thickened shock wave.
It was also assumed that the shock wave was concentric with the body, i.e.
thin shock layer approximation,

The remaining transport properties were evaluated by assuming the
Prandtl number to be constant at a value of 0. 71 and the viscosity obeyed

Sutherland's Law,

10




III, BASIC RELATIONS

In the absence of external force fields the steady state form of the
Navier-Stokes equations is:

Conservation of Species i
V-lp, v)=w, (20)
Conservation of Momentum

P(V'V)V=-Vp+V-T (21)

Conservation of Energy

o;-V<h+¥>=-V-5+ V.l(r.v) (22)
Equation of State
o =0 (hp) (23)

Summation of eq. (20) over all species yields the global continuity equation
V: (pv)=0 (24)

Assuming continuity, uncoupled radiation, negligible pressure and
thermal diffusion and Dufour effects, a binary mixture of chemically re-
acting ''air molecules' and 'air atoms'' and a Lewis number of unity, the steady
state form of the low Reynolds number equations in the absence of external
force fields were derived in references 2 and 3 (i, e. retaining all terms
from 0 (1) to O (Re;l) ). These governing equations expanded for the coordinate

system shown in Figure 2 are:

Continuity
2 (purh + 2 (v + 2 L (25)
5% (Pur’) + —5= (pvr R -
B
x-Component of Momentum
du du uv
2
p[uaX +v5y+R] (26)
B
_ 3p 0 (2+3) du 1 3
“ax+[ay * Nl L 3y (W)

11



y - Component of Momentum

2
ov dv u _ BE 2 0 dv  Jdu . u
p[u ax+vay_ R ]—- 5y+_3 ay[u<2 ay-ax -Jr>]

B
N ) du + 7] du (27)
dx k3 y I 7 dy
Energy
oH oH ) (1+3) 1} dH du
— 4+ + - ==
o[ua By] [By RB] pr |3y T (Fr-llugy
1 3 2
- <o (pu) (28)
RB dy
State
o =p (h: P) (29)
Viscosity Law
u = p (h, p) (30)

where H is the total enthalpy defined as
2 2

u \%

H=h+ (31)

+
2
At this point then, there are six unknowns u, v, h, p, p and p which
may be determined by solving the six equations (25) through (30) simultaneously.
Before discussing the boundary conditions the boundary layer equations will
now be shown,
Retaining only first order terms and assuming that the boundary layer
is very thin with respect to the shock layer thickness, the low Reynolds number
viscous layer equations ( eqs. (25)to(28)) can be reduced to the boundary layer

equations, i.e,

Continuity
) J 3 j
pe (pur)+a_y (pvr’ ) =0 (32)
x - Component of Momentum
du du dp 3 >
_— +t v —_— = - —— =3
p[“ax "ay] 8X+By[uay] (33)

12
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T W R —— Y —" L T—— T WSp— ——m—
v Y

y - Component of Momentum

3P _ o (34)
oy
Energy
oH QH | _ 9 7] OH du
[o) [u-g}—{-+v ay] = ay l Pr [ay + (Pr-1)u ay:l] (35)

Even though the term 0 p/dx is of higher order, it is the usual practice to
retain this term when studying the stagnation region, although Lees (Ref, 14)
found it convenient to neglect the effects of the pressure gradient at the stagna-

tion point.

13



IV. BOUNDARY CONDITIONS

Although it is recognized that slip effects at the wall may be quite
important at the low Reynolds numbers considered in this paper, these effects
have not been included in our present model. However, it has been indicated

by Cheng (Ref, 32) that, 'for a thin shock layer (€< 1) and a cold surface

T
(TW << 1> the velocity slip and temperature jump at the surface are
stag
small," Thus, we assume the usual no slip boundary conditions at the wall,
i.e.
u (x, 0) = u\(VX)= 0 (36)
v (x,0) = v (x) (37)
h (x,0) = hW (x) (38)

The location of the edge of the viscous layer within the shock layer
and the magnitude of the physical variables at the outer edge of the viscous
layer are not known "a priori'. Thus, in our previous studies (Refs. 2 and 3),
which were primarily concerned with departures from boundary layer theory
at relatively high Reynolds numbers, the low Reynolds number equations were
integrated from the wall out to the discontinuous shock wave, where the physical
variables could be calculated from the Rankine-Hugoniot shock relations.
However, this investigation includes sufficiently small Reynolds numbers
that the shock wave can no longer be considered thin enough to be treated as
a discontinuity, Also, the shock layer may be fully viscous with no classical
inviscid region separating the two distinct regions of flow characterized by
large gradients of all of the fluid properties. The derivation of the Rankine-
Hugoniot jump relations considers the conservation of mass, momentum and
energy across a small region, in which very large changes take place com-
pletely within the small region., At the outer boundaries of the region it is
necessary that the flow be influscid (i. e. the molecular transport phenomena
within the moving fluid are negligible). Thus, the Rankine-Hugoniot shock
relations are seen to become a poorer approximation with decreasing Reynolds

number, since, like the boundary layer equations, they consist of only first

14




.order terms, and require the flow outside to be relatively inviscid (of course,

at the inner edge of the boundary layer, i.e., the wall, there is no fluid
motion relative to the wall),
The problem is not that the Rankine-Hugoniot relations are invalid
at these low Reynolds numbers. In fact, if a shock wave were somehow
formed in an otherwise quiescent fluid for the same conditions, it would be
found that sufficiently far removed from the shock wave the conditions on both
sides were indeed related by the Rankine-Hugoniot relations. However, in
the limited confines of the region of flow about the nose of a vehicle with a
reasonable size, as the shock wave becomes -.thicker, its structure becomes
more intimately coupled with that of the shock layer. Thus, it is no longer
adequate to match only the flow variables, but one must also match the
derivatives consistent with the mathematical order of the shock layer equations.
A scheme similar to that first suggested by Sedov et at. (Ref. 29) and
utilized by Cheng (Ref. 25 and 32), Probstein and Pan (Refs. 30 and 31) and
Kao (Ref. 26) has been used to obtain the proper outer boundary conditions for
the low end of the low Reynolds number regime. In this scheme, one is still
not concerned with the complete internal structure of the shock wave but only
with the structure immediately before and after the region of maximum
gradients. In the region of maximum gradients (called the shock wave) a valid
model has yet to be demonstrated, however, adequate models can be constructed
fore and a:ft of the shock wave and then related to one anothef by overall con-
servation considerations., Thus, we postulate the Navier-Stokes equations in
both regions. Although the Navier-Stokes equations are being accepted as a
reasonable model behind the shock wave,in the undisturbed flow at low Reynolds
numbers, it may not be very reasonable. However, there is no restriction
on the distance in front of the shock wave, Thus, it is assumed that sufficiently
far upstream the flow is completely undisturbed, and we need only consider
the level of the free stream flow variables. This is consistent with our quasi-

steady state analysis.

15



For a thin shock wave, 1i. e.

AS <0 (GS)

(39)

concentric with the body surface it can be shown (Ref. 29) that the conservation

relations across the shock wave are:

Continuity

o V@
Momentum

P, ’\7@ ({./'co
Energy

pm(vm--ﬁ)<hw+—;—> -(Im;)- \-/"m+<_q‘ - n

= Pgr Vg - m) <hSI *

=Pg Vg o P

n)+pn-7T

2
A%

- -y

QD= pSIV

st Vsr* ™+ pgp

[0

—

z )" Tsr™) " Vgt g

-
where n is the outward unit normal vector, therefore

-

—-—
Ve n=v

is the normal component of velocity.

“ T @

-
n

(40)

(41)

(42)

(43)

The subscript SI refers to the shock

interface, i.e. the surface at which the structure of the shock wave is matched

with that of the shock layer,

Thus, utilizing the same coordinate system and

assumptions used in deriving the low Reynolds number viscous layer equations

(egs. (25) to 28) ), plus assuming uniform flow in front of the shock wave,

the modified shock jump relations become

Continuity

el -

lpVISI

x - Component of Momentum

foea]. -

d
pvu -y <§;;—

)]

SI

(44)

(45)

S

1
S . m—

o e e — e A e _ SN S . . d—



y - Component of Momentum

cot (KBx) 3y

24 | = rp+2u 2%y 2 46
‘pv Plo = {PVvEptsu| 53t 5 u- Sy (46)
SI

Energy

2 2
v h4+ A\ _ v h+u+v2 __H4 ch ou _u
P 2 =P 2 Pr oy M%"\3y "R
® B/ g1

(47)

Note that the x-component of momentum does not yield u_= Ugy except at
very high Reynolds numbers.

Those terms with a coefficient of viscosity are of order Re;l. So
it is seen, that as expected, in the high Reynolds number limit we recover
the usual Rankine-Hugoniot shock relations, and the order of the boundary
conditions is consistent with the differential equations. Note: the shock
curvature is included in the shock boundary conditions.

The low Reynolds number viscous layer partial differential equations
are of order seven requiring seven boundary conditions given by eqs., (36) to
(38) and eqs. (44) to (47).

The location of the shock interface, or the surface where the matching

of the two structures occurs, can be determined by the following constraint

based on the conservation of mass:

6

SI
1+j 1+j j
o, V., Tgp + pW VoTlw J. pu (2r) dy (48)
o
At the wall, the boundary conditions for the boundary layer equations are
the same as for the low Reynolds number viscous layer equations and these

are given by egs. (36) to (38). The boundary conditions at the edge are as

usual:
lim u(x,y) = u (x) (49)
y—>
lim h(x,y) = he (x) (50)
y==

17




where ue(x) and he(x) are determined from an inviscid solution as the values
at the wall assuming no boundary layer. Since the boundary condition at the
wall for the inviscid solution is

\' =0 (51)

then 2

h (x) = H_- — (52)

In the stagnation region

du

e
ue(x) ~ o

X (53)

where the modified Newtonian velocity gradient is given by

du / 2(p_-pP_)
e _ 1 Ve "o (54)
dx R P

B e

Thus, for the boundary layer solutions we are assuming the inviscid flow is
given by a modified Newtonian solution.
The boundary layer partial differential equations are of fifth order and

the five boundary conditions are given by egs. (36) to (38) and eqs. (49) and
(50).
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V. NORMALIZED SYSTEM OF EQUATIONS AND BOUNDARY CONDITIONS

In order to reduce the partial differential equations to ordinary dif-
ferential equations, we employ a technique which has proven quite useful in
treating the viscous layer (Refs, 2, 3, 21, 23, 24), namely an approximate
separation of variables. The approximation involved is that terms of higher
order in KBx than KBZXZ are being neglected. The variation in the x-direction
is assumed to be given by a series compatible with the Rankine -Hugoniot rela -

tions, thereby yielding ordinary differential equations in y alone. The assumed

form of the separation is the same as used in reference 3, i.e.,

wz Kyxu (y) (55)
ve (-2 Ko v (y) (56)
h= (- KSR (y) - Ky x By () (57)
p=t-2 Kyx)e () (58)
o= (1 -KS ) p) () Ky x By () (59)
we (-2 K 2) by ) (60)

(61)

r=x(1+KBy)

where the terms with subscripts 1 or 2 are functions of y alone, For con-

venience, the following non-dimensional forms are introduced:

h
-1 5 vy co. By = . 2
P A S 2 V22
P _ P
B:-E pl 9; = —'}—2— ’ p2= ———2? (62)
F1 _ Y

- = ’ Y
K R
o Res

where the subscripts ® and s refer respectively to the free stream conditions

and to a state immediately behind an equivalent normal shock wave given by
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the Rankine-Hugoniot relations. In addition, a compressibility transformation

is also introduced, i, e.

y _ _
n = J- pdy (63)
o
With the above simplifications, the low Reynolds number viscous layer
equations reduce to the following system of dimensionless non-linear ordinary
differential equations with variable coefficients, to be used to obtain first

order non-similar solutions in the forward region of a hypersonic vehicle:

(EV)n + (1 +3j) (—‘:—+$)=0 (64)

— P, +P
-— —_ —_—— 1 2 _— —_— —_——
u (—E“—+ v)+ pvu -2 ———= (;ouun)77 +(24)) pu, - (uu)n (65)

o

€DvY +p. 2 e(OEv ) +(1+’)[_Tl 2 a0 ] (66)
" pl11 3€0hv,) DK, -3 .

- _ /3 -

P, +u(;+v)=0 (67)

R i S

pvh '<pr h1>+(1+3) -5 (68)
n 'y n

_— ———— — -2
pov h2n+ 2 [( pHu un>n + (14j) pu un - (gu )n]

(69)
= _ T,
- <%f‘i,- 5 > + (1+j)—1_§‘7 h, + z—‘:—[u +epVu, - (h1+h2)]
n n
n
p=pP (hl ) Pl) (70)
H =4 (b p) (71)

where the subscript 7 denotes derivatives with respect to . It is seen that

separation of the variables has increased the number of unknowns to eight,
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including u, v, hl’ hZ’ _;->1, 52, P, ﬁ . This requires that the number of
governing equations also be eight, eqs. (64) to (71), while the overall
order of the mathematical system is ten, requiring ten boundary conditions.

The boundary conditions at the surface, = 0, eqs. (36) to (38) become

G =0 ’ v = -\—f-
w W W
(72)
El = Kl = - HZ (isoenthalpic wall)
w w W
At the shock interface, 77 = nSI equations (44) through (47) become
7 = -1 73
(PV)g, (73)
1-({puu
T = - ">SI | (74)
SI 1.3
" Hsr
D 1 -¢ -2 m [(l+j) u 2¢ 5\75 ] (75)
p = - - — -
lg, 3 FslI SI s
p, =0 (76)
P
2SI
n
— 2 SI
hl =1-¢€ - Br (77)
SI
— - 2 SI
h = -(l-u.) - ———————— (78)
ZSI SI Pr .
The constraint equation becomes:
1+j GSI u j
5 J—':I ——[21+_]d 7
(L+o ) "+p vy, J p (1+y) n (79)

Here it is noted that for the special case of zero mass transfer, i.e,. vaW =

examination of eq. (64) indicates that the constraint

21

0,



v' =0 (80)

w

becomes identical with eq. (79). This latter result (Ref. 2) follows from the
fact that since GW and ;w are both zero (for zero mass transfer), unless v
also vanishes, one obtains the physically untenable result of an infinite
density gradient at the wall, (Ref, 21).

The dimensionless boundary layer equations become

—— u

+(1+j) —=0 81
(;OV)17 (1)) — (81)
_ _ 2 52
puu>-pvun+—_--—‘€l—:o (82)

W o
oi 7\ L3351 -
<Pr h1 > -pv h1 =0 (83)

n/. n
[

Note that the second energy equation 1is not included since it is usually
assumed and our results, present and past (Ref., 3), indicate that the concept
of similarity in the stagnation region at high Reynolds numbers is a good
approximation. The boundary conditions at the surface (n = 0) are the same

as eqs. (72), whereas at the edge of the boundary layer, eqs. (49) and (50)

become
lim u(n) = Ee = J2e (84)
n-ocn
lim h () = He =1 (85)
n-

Here it is seen that this new formulation of the boundary layer equations and
boundary conditions has the same form as that more commonly used (Refs. 1
and 17) and indeed the same asymptotic behavior at the edge.

In general, the transport properties depend on both temperature and
composition, However, since the diffusion equations have been uncoupled,
the composition of the gas is not calculated explicitly, and so it is necessary

to resort to further approximations. Constant Prandtl and Lewis numbers
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have already been introduced and hence the thermal conductivity and the
diffusion coefficients are not required explicitly. Thus, only the viscosity
coefficient remains to be evaluated.

It is assumed that the gas is in chemical equilibrium, or more
explicitly that the state of the gas can be determined from a Mollier diagram
(e. g. Ref. 33). That is, knowledge of two state functions (e. g. pressure and
enthalpy) uniquely determines the others (e. g. temperature, composition,
density, etc.). As already noted, it is assumed here that the viscosity co-

efficient can be approximated by Sutherland's formula for air (Ref. 34).

3/2
-5 717 T
B=p(T)=1.16x 10 <225+T><492> (86)

with T in oR, U is given in lbm/ft-sec. However, since (from the Mollier

diagram)

T = T (h,p) (87)
then implicitly

p = ¢ (h,p) (88)
and the equation of state may also be obtained from the Mollier diagram i. e.

p = p (h,p) (89)

Conditions behind an equivalent normal shock were determined from

shock tables which incorporate the 1959 ARDC model atmosphere, (Ref. 35).
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VI. DISCUSSION OF RESULTS

Numerical solutions for both systems of equations with their appro-
priate boundary conditions were obtained on a high speed digital computer
(IBM 7094), The range of hypersonic flight conditions for which calculations
were obtained include flight velocities from 10, 000 ft/sec. to 25, 000 ft/sec.;
altitudes from 100, 000 ft, to 350, 000 ft, ; shock Reynolds numbers from 6 to
15, 000; surface temperatures from 8000R to 35000R; and dimensionless mass
transfer rate parameter fw from 0 to -0.4. The equations were integrated
from the wall out to the shock interface for the low Reynolds number system
and to the edge of the boundary layer for the other system. Since the boundary
conditions are split, an iterative procedure was required,

Some typical solutions for the shock layer profiles of u, v, h and ;
are shown in figures 3 to 8, As expected, the viscous effects extend further
into the shock layer with decreasing Reynolds number. Also, note the
behavior of the flow variables at the shock interface with decreasing Reynolds
number. Down to a shock Reynolds number of about 1000 the values are indis-
tinguishable from those obtained with a discontinuous shock wave (Rankine -
Hugoniot conditions) (Ref. 3), i.e., neglecting those terms in the boundary
conditions (eqs. 73 to 78) containing the viscosity coefficient, Below a shock
Reynolds number of 1000, merging of the two flow structures (shock wave
and shock layer) is apparent, because the values of the flow variables at the
shock interface are significantly different from that given by the Rankine-
Hugoniot relations. That is, part of the shock layer structure is now merged
and coupled with shock wave structure. In fact, upon examination of figure 5,
where the shock Reynolds number is 1000, but including mass transfer, it is
seen, that the normal component of velocity v is not that given by Rankine -
Hugoniot considerations, thus indicating some merging at this Reynolds number.
Also, note that although in figure 5 :;w appears to be zero the actual value is

0.0049, corresponding to fw = -0,4. In figure 3, a comparison between a low
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Reynolds number solution and a boundary layer solution at a shock Reynolds
number of 15,000 is shown, It is seen, that even at this large a Reynolds
number there is a significant deviation in the predicted profiles, especially
in the tangential velocity component, u, which shows up as a discrepancy
in skin friction of thirty percent for this particular condition, while the

enthalpy difference shows up as a ten percent difference in the heat transfer

rate. It is readily seen that the difference in heat transfer is accountable for
by the thinner viscous layer prediction of the low Reynolds number solution.
However, quite vividly seen is that the major difference in skin friction is due
to the raised level of the tangential velocity at the edge of the viscous layer,
thus indicating that the boundary layer is not thin enough for boundary layer
theory to be valid (i.e., edge conditions given by solution of the Euler equations

at an inviscid wall),

Before discussing the low Reynolds number results, a comparison
betweenthe present boundary layer solutions (which are completely compatible |
with the present low Reynolds number solutions) and the precise boundary layer \
solutions obtained by Scala and Gilbert (Ref. 17), will be given. Scala and ;
Gilbert utilized the now familiar hypersonic laminar boundary layer equations
for a compressible viscous multicomponent chemically reacting gas, and the
transport and thermodynamic properties were evaluated as a function of the
local temperature and equilibrium gas composition. Preferential diffusion
of the various gaseous species was included by evaluating the multicomponent
Lewis numbers at surface conditions. The surface and outer boundary conditions
were satisfied, assuming that the gas was in a state of thermochemical
equilibrium throughout the boundary layer. They found that, intheabsence of

mass transfer, they could correlate all of their heat transfer results with

Vm
(CH ReS 5 = ————d—l? (90)
oV :L
SG RB< i

dx
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and their skin friction results with

2C

Ho X ( >
=-0.35+[ C \/Re (91)
Cf <RB H\ s BL
o

BL SG
SG

where the Stanton number and skin friction coefficient are defined as

P w (92)

C T
£, W (93)
2 pwvm

The subscript BL refers to the boundary layer results of Scala and Gilbert,

SG
and the subscript o indicates the absence of mass transfer., Assuming a
modified Newtonian velocity gradient (eq. 54), these correlations can be further

reduced to

1
C Re = —— (94)
< Hov S>BLSG VvV 2¢e

f sin (K_ x)
° _[Re - B (95)

-0.3 2
BLSG 1 - 0,35 €
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The results of the present boundary layer solutions normalized with
respect to those of reference (17) are summarized in figure 9, It is seen that
the agreement is reasonable, i.e., since various previous boundary layer
predictions also differ to about the same degree, see reference (28). In order
to ascertain the reason for the discrepancies, new solutions were obtained with
the present boundary layer formulation utilizing the density and viscosity
variations obtained from Scala and Gilbert's solutions for the same flight
conditions, With a Prandtl number of 0. 71, no changes in the results were
noted, However, when the Prandtl numbers were changed to those obtained
by Scala and Gilbert the discrepancies were reduced to one half that shown in
figure 9. This is quite surprising, since the differences in Prandtl number
were no more than two or three percent. The remaining discrepancy is most
likely due to neglecting preferential diffusion in the present model, i.e. a
Lewis number of onewas assumed in order to uncouple the diffusion equations.

In figure 10 the effects of air injected into air for the present boundary
layer results are shown. These are in close agreement with those of reference

(36). The dimensionless mass transfer parameter is defined as

r'nw (H_ - h_)
B = a (96)

w
o

where r'nW is the mass transfer rate related to the usual dimensionless mass

transfer rate fw as

£ = = | (97)
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Note, the slopes 3 QW/B 1:nw and 3 Tw/a an are not constants.

The normalized heat transfer rates can be seen in figure 11 over a
very wide range of Reynolds numbers. The abscissa ¢ 2 Res was first used
in reference 3 in order to correlate the viscous layer heat transfer results
(outer boundary conditions given by the Rankine-Hugoniot relations); these
results are also shown in figure 11. The present results are seen to have
a Mach number dependence when merging occurs. (More results have been
obtained but have been omitted for clarity; the trends are the same,) Included
in this figure are the results of Cheng (Refs. 25 and 32), in whose analysis the
governing equations do not contain the higher order (Res—l) terms, and the
results of Kao (Ref. 26) who was required to utilize three different
theories (i, e., second and third order boundary layer theories plus, at the
lowest Reynolds numbers, integration through the shock) in order to cover
the low Reynolds number regime.« It is aiso seen that the present results
extend, by about one order of magnitude, to lower values of €2 Re_, than the
aforementioned studies, primarily due to the orbital hypersonic values of ¢
used in the present study. These lower values of ¢ are seen to raise the
predicted heat transfer rates in excess of fifty percrent above boundary layer
predictions, and can, thus, not be reasonably neglected.

To see if these Mach number effects were noticeable at even lower
Reynolds numbers, i.e., out in the near free molecule and free molecule
regimes, earlier results of Willis (Ref. 11) in the near free molecule regime,
correlated by Hamel (Ref. 37), which showed very little Mach number effect
as a function of free stream Reynolds numbers, were re-examined as a function
of the parameter ¢ 2 Res and are also shown in figure 11, Note

M
Re = Re (98)

and u s is evaluated from Rankine-Hugoniot considerations. The same
relative Mach number trend is also seen at these very low Reynolds numbers,
Even though any of the other merged layer results could just as reasonably

be interpolated between their results and the modified Willis results,only the
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present results have been so extended, and the interpolations are shown as
dashed curves. In all of these studies,all of the accommodation coefficients
have been assumed to be unity.

The assumption of local similarity appears to break down at lower
Reynolds numbers in contradiction to the conclusions of Kao (Ref, 38). Note
that at the particular low Reynolds number (Res = 10) where Kao tested the
similarity concept, similarity appears to be reasonable. However, this is
clearly a coincidence. Therefore, his conclusion concerning the validity of
local similarity over the entire range of Reynolds number does not seem to
be correct, Note the two components of the heat transfer rate are combined
as

Q = QWl c:os2 (KBX) + QWZ s'1n2 (KBx) (99)

to yield the heat transfer rate around the forward region of the body. The

present non-similar correlations are uniformly valid out to angles as large as

sin (K %)y = 0 (€) (100)

and are for an isoenthalpic surface,
Another interesting point to be seen from the results of figure 11 is
that the low Reynolds number effects appear to decrease with increasing shock

density ratio € . This seems to be a reasonable trend since, as noted earlier,

=0 101
6 (€RZ) (101)
Therefore, the boundary layer thickness, § BL which varies as
§. . w — (102)

BL /_—Res

can increase more, for larger €, before becoming significant with respect to

o T On the other hand, the shock wave thickness As varying as

1
Asoc Re
s

(103)

continues to increase and takes over, decreasing the trends before the other
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low Reynolds number effects become significant, This would appear to clear
up some of the discrepancies in the reported low Reynolds number effects
(Refs. 2,3,18-26,32,39,40). Again it is stressed that the real gas orbital
hypersonic density ratios show significant low Reynolds number effects,

Another possible cause of the discrepancies was indicated in reference
3. There it was shown that the only other study that had carefully obtained a
boundary layer asymptote consistent with the low Reynolds number study
(Ref. 22) (both theoretically and experimentally), had an almost identical
correlation for heat transfer to that obtained in reference 3.

Even more significant low Reynolds number effects can be seen in
figure 12 which shows the normalized skin friction as a function of 63 Res.
The same Mach number dependence is seen, however, greatly amplified.
Again included are the results of Kao for purposes of comparison. Here it
is seen that consideration of the low Reynolds effects can be all important
for maneuvering or very slender ballistic re-entry vehicles. Again the same
Mach number effects are seen in the near free molecule regime. The inter-
polations are again shown by dashed curves. Note that at the highest Reynolds
numbers computed, Res = 15,000, the first component of the heat transfer
rate and the skin friction predictions are ten and thirty percent respectively,
above boundary layer theory predictions, indicating the strong effects of the
vorticity in the inviscid flow, or equivalently, the boundary layer is not yet
"thin'" with respect to the shock layer thickness., The curves are extrapolated
to the high Reynolds numbers asymptote,.

The effect of mass transfer of air on the heat transfer rate in the low
Reynolds number regime is also shown in figure 10. However, in the definition
of B, eq. (96), QWO is now the low Reynolds number value of the heat transfer
rate in the absence of mass transfer for the same flight conditions. The
single curve represented all the mass transfer results except at the lowest
Reynolds numbers, i.e.

Res < 0 (30) (104)

where the results rapidly climbed above the curve. However, the validity of
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the present model itself becomes questionable at these low Reynolds numbers
and even more so in the presence of relatively large mass transfer rates.

Interestingly, the zero mass transfer skin friction results in figure 12
are also the correlations in the presence of mass transfer. Again, at the lowest
Reynolds numbers, i.e.,

Re_ < 0 (40) (105)

the results are above the curve.

Although considerations of the tangential transport of mass in the shock
wave are important for determining the location of the shock interface and
other aspects of the shock layer structure, the maximum effect on the skin
friction and the heat transfer rate is insignificant, i.e., less than four percent
and one percent respectively, even at the lowest Reynolds numbers considered.

A further indication of the lower limit of validity of the present analysis
is shown in figure 13, where the present correlation of the first component
of pressure is compared with the experimental curve-fitted data of Potter and
Bailey (Ref, 41) for hemispherical-nosed probes in Nitrogen. The agreement

is excellent (within one percent) for

Res
2 200 (106)
€
or
Res > 0 (50) (107)

in agreement with the mass transfer limitations, eqs. (104) and (105).
It has been suggested (Ref. 42) that the actual (experimental) behavior

may be explained as follows: At very high Reynolds numbers

f
° I:)lw/psta.g

BL

(very thin boundary layer) the flow behind the shock is brought isentropically
to rest. As the Reynolds number decreases (viscous effects extend further
into the shock layer) viscous losses occur and the actual stagnation pressure

is less than the isentropic prediction. With further rarefaction, the shock

thickens such that it begins to lose its continuum character and approaches a

31



molecular model, Eventually, the shock wave thickens sufficiently to include
the entire flow field, the rarefaction effects predominate over the viscous
effects and the pressure increases., With sufficient rarefaction more of the
molecules make a more direct impact on the body as the free molecule limit
is approached. It is clear that a strictly continuum analysis cannot account
for all of the foregoing processes; therefore the divergence of the results
when eq. (106) is violated.

Re-examining figures 11 and 12, it is seen that eq. (106) suggests that
the lower limitation of the present theoretical study is slightly to the left of

the peaks in Q  /Q (figure 11) and slightly to right of the peaks inT_ /T
w W w W
o ORI, BL

(figure 12)., The viscous layer prediction of the variation of 'ﬁl (Ref. 3), although
not correlated by the same parameter, shows only an increasing pl with de-
creasing Reynolds number. Furthermore, it is seen that the viscous layer pre-
dictions of heat transfer rates and skin friction are greater than the merged
layer results, Thus, in the light of figure 13, plus the results of reference 3,

it might seem as though peaks might be broader to the left for heat transfer

and even possibly higher and broader to the left for skin friction. In order to

assess this jump condition, new solutions were obtained in an ad-hoc
manner by replacing the theoretical boundary condition P, given by
eq. (75) with P, determined from the experimental results of reference
41, Even at the lowest Reynolds numbers considered (Res = 10), the heat
transfer rate predictions were virtually unchanged while those of the
skin friction were less than five percent above that given in figure 12,
Since other wall slip effects are probably also of importance at these low
Reynolds numbers, all should be included in a consistent manner to assess
this effect properly. However, without further study of surface slip
effects, the results as presented in figures 11 and 12 are believed to be
the best available at present.

The abscissa, Res/ Ve, usedto very effectively correlate p ,

was derived in reference 41 from viscous layer and Rankine-Hugoniot

considerations.
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The correlations for the second component of pressure are

shown in figure 14. Following eq. (59) the two components are combined

as follows

2 , 2
P, =P, cos (KBx) - P2 sin (K Bx) (108)
w W

to yield the pressure at the surface around the forward region of the body.
Note that Pys which accounts for centrifugal effects, is disappearing with
decreasing Reynolds numbers, a further indication of a break down of the

continuum character of the flow,
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VIiI, CONCLUSIONS

1. Non-similar heat transfer rates, skin friction and normal surface
pressures have been correlated from the lowest limit (ReS = 0 (50)) of the
present model up to the high Reynolds number boundary layer asymptote.

2. In order to compare results in the low Reynolds number regime
with those from boundary layer theory one must use a compatible boundary
layer analysis.

3. The low Reynolds number effects, obtained in this study, are due
to a combination of several effects. These include: a thinner viscous layer
than predicted by boundary layer theory, vorticity in the "inviscid' region of
the flow field, and a larger region for the flow parameters to change from free
stream values to surface conditions when merging occurs,

4, The effects of hypersonic normal shock density ratios (€= 0(0. 1))
are noted by larger heat transfer rates and skin friction with decreasing €,
in the low Reynolds number regime,

5. The benefits obtained with mass transfer in the high Reynolds
number regime (i, e. reduction of heat transfer rates and skin friction) have
been shown to extend into the low Reynolds number regime.

6. The implications of the present analysis can be very important
for various applications. An example would be the increased heat transfer rate
predictions on very small particles that have penetrated into the atmosphere
and are still at low Reynolds numbers when experiencing maximum heating
rates, On the other hand, for large manned re-entry vehicles which must
maneuver and decelerate at high altitudes, one must have adequate knowledge

of the forces and moments at low Reynolds numbers.
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SUMMARY

In this paper, a unified, theoretical model of the hypersonic viscous
shock layer is presented, which, in a self-consistent manner, covers the
entire range of shock Reynolds number from 0 (50) to 0 (104), including the
effects of mass transfer. At the lowest Reynolds numbers considered,
merging of the fully viscous shock layer with the shock wave occurs, and at
the highest Reynolds numbers, the boundary layer asymptote is approached.

In addition, in order to compare the new results obtained from this
new system of equations and boundary conditions at high Reynolds numbers
with those obtained from boundary layer solutions for precisely the same .
hypersonic flight conditions, the boundary layer equations have been re-
formulated by retaining only first order terms in the above equations, in
addition to making the usual assumption of a thin boundary layer. These
equations and the boundary conditions used are equivalent to the more usual
boundary layer formulation,

Correlated results of the numerical solutions obtained on a high
speed digital computer (IBM 7094) for both systems of equations with their
appropriate boundary conditions are presented. The range of hypersonic
flight conditions for which calculations were obtained include flight velocities
from 10, 000 ft/sec. to 25,000 ft/sec.; altitudes from 100,000 ft. to 350, 000
ft.; shock Reynolds numbers from order 10 to order 104; surface tempera-
tures from 800°R to 3500°R; and dimensionless mass transfer rate parameter
fw from 0 to -0.4, The correlations include non-similar heat transfer rates,
skin friction and normal surface pressures,
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